A Topic Model for Linked Documents and Update Rules for its Estimation

نویسندگان

  • Zhen Guo
  • Shenghuo Zhu
  • Zhongfei Zhang
  • Yun Chi
  • Yihong Gong
چکیده

The latent topic model plays an important role in the unsupervised learning from a corpus, which provides a probabilistic interpretation of the corpus in terms of the latent topic space. An underpinning assumption which most of the topic models are based on is that the documents are assumed to be independent of each other. However, this assumption does not hold true in reality and the relations among the documents are available in different ways, such as the citation relations among the research papers. To address this limitation, in this paper we present a Bernoulli Process Topic (BPT) model, where the interdependence among the documents is modeled by a random Bernoulli process. In the BPTmodel a document is modeled as a distribution over topics that is a mixture of the distributions associated with the related documents. Although BPT aims at obtaining a better document modeling by incorporating the relations among the documents, it could also be applied to many applications including detecting the topics from corpora and clustering the documents. We apply the BPT model to several document collections and the experimental comparisons against several state-of-the-art approaches demonstrate the promising performance.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

یک مدل موضوعی احتمالاتی مبتنی بر روابط محلّی واژگان در پنجره‌های هم‌پوشان

A probabilistic topic model assumes that documents are generated through a process involving topics and then tries to reverse this process, given the documents and extract topics. A topic is usually assumed to be a distribution over words. LDA is one of the first and most popular topic models introduced so far. In the document generation process assumed by LDA, each document is a distribution o...

متن کامل

Application of Model-Based Estimation to Time-Delay Estimation of Ultrasonic Testing Signals

Time-Delay-Estimation (TDE) has been a topic of interest in many applications in the past few decades. The emphasis of this work is on the application of model-based estimation (MBE) for TDE of ultrasonic signals used in ultrasonic thickness gaging. Ultrasonic thickness gaging is based on precise measurement of the time difference between successive echoes which reflect back from the back wall ...

متن کامل

A New Document Embedding Method for News Classification

Abstract- Text classification is one of the main tasks of natural language processing (NLP). In this task, documents are classified into pre-defined categories. There is lots of news spreading on the web. A text classifier can categorize news automatically and this facilitates and accelerates access to the news. The first step in text classification is to represent documents in a suitable way t...

متن کامل

Bayesian and Iterative Maximum Likelihood Estimation of the Coefficients in Logistic Regression Analysis with Linked Data

This paper considers logistic regression analysis with linked data. It is shown that, in logistic regression analysis with linked data, a finite mixture of Bernoulli distributions can be used for modeling the response variables. We proposed an iterative maximum likelihood estimator for the regression coefficients that takes the matching probabilities into account. Next, the Bayesian counterpart...

متن کامل

روش جدید متن‌کاوی برای استخراج اطلاعات زمینه کاربر به‌منظور بهبود رتبه‌بندی نتایج موتور جستجو

Today, the importance of text processing and its usages is well known among researchers and students. The amount of textual, documental materials increase day by day. So we need useful ways to save them and retrieve information from these materials. For example, search engines such as Google, Yahoo, Bing and etc. need to read so many web documents and retrieve the most similar ones to the user ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010